

XCVIII CONGRESSO NAZIONALE Napoli, 17 - 21 Settembre 2012

AMPEROMETRIC DETECTION OF QUANTAL CATECHOLAMINE SECRETION FROM INDIVIDUAL CELLS BY AN ION BEAM MICROFABRICATED SINGLE CRYSTALLINE DIAMOND BIOSENSOR

Federico Picollo

University of Torino Physics Department

NIS Centre of Excellence

CNISM sez. Torino

picollo@to.infn.it

Outline

\circ Introduction

- motivations of diamond micro-fabrication
- interaction ion-diamond

$\circ~$ Conductive channels fabrication

- sample masking
- implantation

• Channels characterization

- structural & electrical
- thermal treatment dependence

○ Introduction²

• chromaffin cells: what & why?

oPrototype of biosensor

exocytose measurement

• Conclusions

Napoli, 19 September 2012

INTRODUCTION

BIOSENSOR

A diamond-based cellular bio-sensor

A bio-compatible and transparent diamond active substrate for interfacing with single excitable cells:

- electrical interfacing: micro-electrodes for cell sensing and stimulation
- optical interfacing: integrated waveguides
- chemical interfacing: microfluidic devices

Action potential

- important physiological process governing the presynaptic neurotransmitter release
- fast (~1-100 ms) membrane depolarization (-60 ÷ +50 mV) due to the entering of Na and Ca ions into an excitable cell
- voltammetric detection through capacitive coupling with micro-electrode arrays (MEAs)
- state of the art: issues with the chemical inertness of common substrates and with optical access for multiparametric acquisition

Exocytosis

- secretion of catecholamines (adrenaline, noradrenaline) from vesicles in which they are highly concentrated
- state of the art: limited spatial resolution with conventional carbon fibers

Optical interfacing

- probing Ca concentration with specific fluorescent markers (Fura)
- state of the art: optical systems are not integrated in current MEAs

Chemical stimulation

- stimulation of specific receptors (i.e. nicotinic receptors)
- **state of the art**: limited use of microfluidic systems to perfuse chemicals and pharmaceuticals with high spatial resolution

Napoli, 19 September 2012

at STP condition **diamond** is a **metastable** phase of carbon

graphite is a <u>very different</u> material with respect to diamond:

it is soft, <u>electrically conductive</u> and less chemically inert

the **stable** one is the **graphite** spontaneous conversion doesn't occur

at STP condition **diamond** is a **metastable** phase of carbon

activation barrier (few eV)

graphite is a <u>very different</u> material with respect to diamond:

the **stable** one is the **graphite** spontaneous conversion doesn't occur it is soft, <u>electrically conductive</u> and less chemically inert

at STP condition **diamond** is a **metastable** phase of carbon

activation barrier (few eV)

graphite is a <u>very different</u> material with respect to diamond:

the **stable** one is the **graphite** spontaneous conversion doesn't occur

External interaction

if the diamond lattice gets damaged / distorted it converts to graphite upon thermal annealing

it is soft, <u>electrically conductive</u> and less chemically inert

Thermal annealing

Napoli, 19 September 2012

Interaction of MeV light ions with matter

s the second sec

electronic energy losses

nuclear energy losses

No remarkable structural effects associated with electronic energy losses

CONDUCTIVE CHANNELS FABRICATION

Ion direct writing on diamond

Synthetic Diamond

homepitaxial single crystal [N] < 1 ppm, [B] < 0.05 ppm crystal orientation: { 100 } dimensions: 3×3 ×0.5 mm³

High Pressure High Temperature single crystal [N] < 10 - 100 ppm, crystal orientation: {100 } dimensions: 3×3 ×0.5 mm³

He⁺@ 1800 keV

✓ raster scanning micro-beam (∅~10µm)
✓ ion current: ~ 3-10 nA

Ion direct writing on diamond

Synthetic Diamond Implanted channels He⁺@ 1800 keV \checkmark raster scanning micro-beam ($\varnothing \sim 10 \, \mu m$) Implantation fluence √ion current: ~ 3-10 nA **Electrical characterization samples** Structural characterization samples

*Laboratory for Ion Beam Interactions, Ru*đer *Bošković Institute – Zagreb (Croatia): C @ 6 MeV*

C⁺⁺⁺ @ 6000 keV Fluence range: 2.10¹⁶ - 5.10¹⁷ cm⁻² *AN2000 accelerator, INFN National Laboratories of Legnaro – Padova (Italy)*

He⁺ @ 1300 - 1800 keV Fluence range: 3.10¹⁶ - 5.10¹⁷ cm⁻² *MP2 beamline, MicroAnalytical Research Centre, University of Melbourne – Melbourne (Australia)*

He⁺ @ 500 keV Fluence range: 2.10¹⁶ - 1.10¹⁷ cm⁻²

Variable thickness masking

Control of ions penetration by means of a variable thickness mask*

> ions lose energy passing through the mask

Shallower highly damaged layer

Thermal evaporation of silver through a patterned mask of an array of rectangular holes

* P. Olivero et al., Diamond Relat. Mater. 18, 870 (2009)

Napoli, 19 September 2012

CONDUCTIVE CHANNELS CHARACTERIZATION

TEM cross sections images

Implanted channels

Implantation fluence

Channels length: 400 μm width: 20 μm

Napoli, 19 September 2012

Implanted channels

Implanted channels

3

Electrical characterization: conduction mechanism

Three-dimensional variable range hopping conductance* $G(T) = G_0(T) \cdot \exp\left[-\left(\frac{T_0}{T}\right)^{\frac{1}{4}}\right] = G_{00} \cdot T^{-\frac{1}{2}} \cdot \exp\left[-\left(\frac{T_0}{T}\right)^{\frac{1}{4}}\right]$ $T_0 = \left(\frac{512}{9\pi}\right) \frac{\alpha^3}{k_B N(E_F)}$ Mott 1960

 G_{00} = temperature-independent pre-factor N(E_F) = density of trap states at the Fermi level α = decay parameter of the localized wave function**

> Typical for amorphous system

Cap layer & channel conduce with the same conduction mechanism
 At all the fluences, G(T) follows the Variable Range Hopping model

* S. Prawer and R. Kalish,
 Phys Rev. B 51,15711 (1995)
 * F. Picollo et al.,
 Diam-Relat. Mater. 19, 466 (2010)

** J.J. Hauser et al., (10) **Appl. Phys. Lett. 30**, 129 (1976)

Napoli, 19 September 2012

Thermal annealing effect

Thermal annealing

the conductive channels are surrounded by a insulating diamond matrix

Electrical characterization: conduction mechanism

Sample annealed @ 1000°C

Sample 2

L. J. Collier et al., Proc. Phys. Soc. 51, 147 (1939)

- \checkmark Channels implanted above graphitization threshold
- ✓ The conduction properties are compatible with those of carbon rod

PROTOTYPE OF CELLULAR EXOCYTOSE DETECTOR

Chromaffin cells: what are they?

✓ located into the medulla part of adrenal gland

✓ releases adrenaline and noradrenaline

Chromaffin cells: what are they?

Chromaffin cells: what are they?

Chromaffin cells: model for the study of secretion

15µm

✓ Model of neurons excitation-secretion

- ✓ Easily available \rightarrow large dimensions (>10 µm)
- ✓ Voltage-gated Ca²⁺ channels
- ✓ Electrically excitable
- ✓ Containing chromaffin granules

✓ Diameter = 50 ÷ 300 nm

✓ Catecholamines Concentration = 0.5 - 1 M (~10⁶ molecules each granule)

Chromaffin cells: model for the study of secretion

Amperometry

Adrenaline oxidation

Current Spikes

✓ Amplitude ~ 10-500 pA
✓ Duration ~ 10-100 ms
✓ Each spike is due to the fusion of one granule

Carbon micro-fiber vs. diamond biosensor - 1

Carbon fiber micro-electrode

ADVANTAGES high temporal resolution (<ms)
high sensibility (pA)
not invasive technique
Simple to implement

DRAWBACKS

✓ Low spatial resolution (~ 30 µm²
 ✓ Limited use on single cell

Diamond based bio-sensor

KEY ADVANTAGES

bio-compatibility
chemical inertness

wide electrochemical window

Suitable to be functionalized
Optically transparent

REQUIREMENTS

Availability of a robust technique for diamond micromachining and to produce carbon-based conductive microelectrodes.

Prototype of biosensor

- diamond:
 - HPHT,
 - single crystal,
 - type lb,
 - 3×3×1.5 mm³
- He @ 1.6 MeV
- thermal annealing @ 1100 °C ×2 hours

• Channel dimensions:

 \circ 2 mm \times 50 μ m

Adrenaline oxidation tests

Cyclic voltametry information: ✓ electrochemical window → > 1.5 V ✓ bias for oxidize adrenaline → >800 mV

Potential run from 0 V to 1.5 V with 50 mV/s scan rate

Micro-perfusion:

✓ detection of low volume of adrenaline

Detection of catecholamine

Conclusions

Fabrication of graphite-like conductive channels (ρ ~ 10⁻³ Ω·cm) buried in a transparent and highly insulating (ρ > 10¹⁴ Ω ·cm) diamond matrix

exclusive ion beam process (not additional contacting methods required)

- application of a novel method based on metal variable thickness masks to modulate the channels depth
- ✓ Channels electrical characterization

Variable Range Hopping on as-implanted/low fluence implantation channels

graphitization on annealed sample

First prototype of biosensors was realized

measurement of exocytose was performed

Near future activities...

MULTI ELECTRODES ARRAY FOR EXOCYTOSES DETECTION OF CELL CULTURE

- diamond:
 - CVD,
 - single crystal,
 - type lla,
 - 4.5×4.5×1.5 mm³
- He @ 1.8 MeV
- thermal annealing
 @ 1100 °C ×2 hours

Near future activities...

Acknowledgements

- Sample processing and characterization
- \rightarrow University of Torino
 - P. Olivero, D. Gatto Monticone, S. Gosso, V. Carabelli, A. Lo Giudice,
 - E. Carbone, E. Vittone

- **FIB** micromachining
- \rightarrow National Institute of Metrologic Research
 - G. Amato, L. Boarino, E. Enrico

MeV ion implantation → Ruđer Bošković Institute M. Jakšić, Ž. Pastuović, N. Skukan

→ National Laboratories of Legnaro (INFN) V. Rigato, L. La Torre, G. Legnaro

MeV ion implantation, FIB microfabrication and cross-sectional TEM \rightarrow MARC group, University of Melbourne B. Fairchild, S. Prawer, S. Rubanov

Signal conditioning electronics → Institute of Electron Devices and Circuits, Ulm University, Germany A. Pasquarelli Thank you for your attention!!