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Abstract: Recently, hBN has become an interesting platform for quantum optics due to the peculiar
defect-related luminescence properties. In this work, multicolor radiative emissions are engineered
and tailored by position-controlled low-energy electron irradiation. Varying the irradiation param-
eters, such as the electron beam energy and/or area dose, we are able to induce light emissions
at different wavelengths in the green-red range. In particular, the 10 keV and 20 keV irradiation
levels induce the appearance of broad emission in the orange-red range (600-660 nm), while 15 keV
gives rise to a sharp emission in the green range (535 nm). The cumulative dose density increase
demonstrates the presence of a threshold value. The overcoming of the threshold, which is different
for each electron beam energy level, causes the generation of non-radiative recombination pathways.
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1. Introduction

Electron irradiation has been an interesting tool for engineering layered materials
and tailoring their properties [1-3]. It is possible to consider two main classes of electron
irradiation process: low-energy irradiation, where the electron beam energy is compatible
with a scanning electron microscope (SEM) or a transmission electron microscope (TEM),
i.e., 5-300 keV, and high-energy bombardment that is a process involving electrons with
energy beyond 1 MeV.

Among two-dimensional (2D) materials, graphene was the first one in which electron-
irradiation-induced defects were studied both experimentally and theoretically [4-9]. The
interaction of the electrons with the graphene lattice can induce profound structural modifi-
cations. The graphene can suffer a decrease of its crystallinity in favor of a nanocrystalline
or amorphous nature, depending on the irradiation doses. This can be obtained even at
beam energy in the low-energy range [6,7,10-13]. Importantly, electron-induced defects
in graphene have already demonstrated an enhancing of its chemical reactivity, leading
to graphene chemical functionalization [14-16]. In addition, electron-irradiation-induced
defects have been employed in the engineering of graphene electronic properties [17-21]
and, more generally, in sensing applications [22-29]. In the case of high-energy electron
irradiation, graphene has been mainly employed in composites for radiation shielding
applications [30], therefore structural defects induced by MeV electrons in graphene sheets
have been very poorly studied [31,32].

Transition metal dichalcogenides (TMDs) are another class of layered materials, where
the effect of the interaction with electron beams has been widely explored for tuning their
structural and optical properties [2]. In terms of structural properties, molybdenum-based
TMDs, namely MoS, and MoTe;, undergo a transition from the semiconducting phase (2H
for MoS; and 1H for MoTe;,) to the metallic phase (1T for MoS; and 1T’ for MoTe,), under
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