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Preface

The Ion Beam Induced Charge (IBIC) microscopy is an analytical technique that
exploits the interaction of MeV ion beams, focused down to a micrometer spot size,
with matter to investigate the electronic properties of semiconductor materials
and devices.

The reasons for the increasing utilization of the technique for material
characterization are given by the wide availability of linear accelerator machines
and by the expertise in ionizing radiation detection and signal amplification, both
due to the development of nuclear physics research in the past century. On the
other hand, the reliability of the IBIC microscopy lies on the existence of a solid
theoretical model, allowing to extract from the experimental results almost all the
parameters required for the characterization of the electrical and electronic
properties of the sample under test.

In my Dissertation, the main features of the IBIC technique are investigated and
discussed, together with an overview of the underlying theoretical model and the
associated numerical methods for the simulation of experiments.

Theoretical and numerical predictions are tested and validated against
experimental data, and are exploited both to perform a characterization of the
electronic properties of materials, and to face new challenging applications in
physics and technology, such as the development of innovative 2- and 3-
dimensional position sensitive ionizing radiation detectors.

In Chapter 1, the IBIC microscopy will be introduced in its main features, through
the discussion of the underlying physical phenomena, such as ion-matter
interaction and charge induction mechanisms, and of the relevant applications in
physics experiments and technology development.

In Chapter 2, a systematic analysis of the induced charge pulse formation at the
electrodes of a semiconductor device is presented. The discussion will focus on
charge induction theorems, on relevant application examples and on charge
sharing phenomena in multi-electrode devices.

The implementation of the theoretical results for the development of suitable
numerical tools to simulate the IBIC signal formation is discussed in Chapter 3.
The resulting model, equipped with valuable simulation techniques, will be then
validated and exploited in Chapter 4 in order to model the results of IBIC
experiments, aiming at the characterization of emerging wide band-gap
semiconductor materials as well as at the optimization of advanced charge sharing
particle detection systems.

Finally, Chapter 5 is devoted to the analysis and the development of novel fully
ion-beam-micromachined 3-dimensional diamond particle detectors with
integrated graphitic electrodes.
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