

17th International Conference on Nuclear Microprobe Technology and Applications 14-15 September 2020, on-line

Angle Resolved Differential IBIC analysis of silicon power diodes

Michele Pezzarossa,

Milko Jaksic, Georgios Provatas, Donny Domagoj Cosic, Milan Vićentijević, Matea Krmpotić

Institut Ruđer Bošković

Enrico Cepparrone, Ettore Vittone

Objective:

Electronic characterization of power diodes

What: object of study

Commercially available p-i-n power diode

Electrical characterization

Where:

Institut Ruđer Bošković

The experiments were performed a the Laboratory for Ion Beam Interactions of the Ruder Boskovic Institute in Zagreb (HR) at the ion microbeam line coupled to the 1.0 MeV Tandetron accelerator

Proton microbeams 1.2, 1.5, 1.7, 2.0 MeV Spot size < 5 μm

https://www.irb.hr/eng/Divisions/Division-of-Experimental-Physics/Laboratory-for-ion-beam-interactions

ICNMTA2020

How: Polychromatic angle resolved IBIC analysis

Tilting the sample with respect to the proton beam axis at different angles

How: Polychromatic angle resolved IBIC analysis

Modulation of the carrier generation profiles by different tilting angle and different ion energies

ICNMTA2020

Experimental Results: Charge Collection Efficiency (CCE)

Experimental CCE as function of Tilting angle θ @ different V Parametrized by E

Lines are interpolating segments as a guide for the eyes

Model based on simplified IBIC theory

Results: Model

Solid lines are fitting curves

Experimental and fitting CCE as function of Tilting angle θ @ different V Parametrized by E

Results

Conclusions:

Polychromatic angle resolved Ion Beam Induce Charge technique was applied to

characterize a p-i-n power diode

Spectra extracted from the IBIC maps were measured as function of the

Proton energy (E=1200, 1500, 1700, 2000 keV)

 \succ Tilting angle (θ =0,20,30,40,50°)

> Applied bias voltage (V=1,2,5,8,10,20,200 V)

The analysis based on a simplified model of the IBIC theory was applied to extract the

- \rightarrow Dead layer thickness (1.0 ±0.3) μ m
- \succ The diffusion length of minority carriers in the neutral region L_h = (24.0±1.3) μ m
- > Behavior of the depletion layer width as function of the applied bias voltage in agreement with electrical characterization

□ The fitting curves are in excellent agreement with the experimental data

The methodology here developed is suitable for a non invasive functional analysis of power diodes and provides valuable parameters for the design of new semiconductor devires ICNMTA2020