

NIS colloquium

X-ray induced modifications in materials: applications and challenges, 6-7 April, 2017, Torino

Materials Research at National Institute of Materials Physics

Petre BADICA

Romania: East of Europe, North of the Balkan Peninsula National Capital (2,080,000 in 2003) Sigheful o UKRAINE O over 300,000 BOTOŞANI O over 100,000 Satu Mare Dorohoi O over 50,000 Debrecen o other main city Vișeu de Sus other city Suceava Chief town of department (jude) MOLDOVA 1000 m Cîmpulung Moldovenesc 500 m Vatra Dornei BIHOR 100 m Oradea □ Chisinau HUNGARY VASLUI Timișoara UKRAINE VRANCEA Cisnădie Galati Rîmnicu Sărat Vălenii de Munte Belgrade SEVERIN ARGES Tîrgovişte Moldova Nougo VÎLCEA SERBIA Drobeta-Turnu **T**ăndărei Severin Slobozia Craiova Calafat OLT BLACK SEA BULGARIA Măgurele Zimnicea

Located: ~17 Km south from the Bucharest city center and ~150 Km from Dracula Castle

Magurele Science Hub

- 1. 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (includes Extreme Light Infrastructure Nuclear Physics)
- 2. National Institute for Laser, Plasma and Radiation Physics (includes Institute of Space Science)
- 3. National Institute for Earth Physics
- 4. National Institute for Optoelectronics INOE 2000

History: Institute of Physics of the Romanian Academy of Science 1949

Labs:

- 10. Multifunctional Materials and Structures Laboratory
- **20.** Laboratory of Magnetism and Superconductivity
- **30.** Nanoscale Condensed Matter Laboratory
- **40. Optical Processes in Nanostructured Materials**
- 50. Laboratory of Atomic Structures and Defects in Advanced Materials
- 60*. Certified Laboratory for chemical analysis of advanced materials (XPS)

^{* -} it is not an administrative entity

Fields of interest:

- 1. Cond matter phenomena and processes in nano-dimensional, surface and interface systems
- 2. Synthesis and characterization of nanomaterials and nanostructures
- 3. Functional materials and structures with technological impact

A: Fundamental studies cond. matter

- 1. Dimensional effects in nano-objects and cuantic layers
- 2. Surfaces and interfaces in structured materials
- 3. Electronic correlations and magnetic interactions
- 4. Computational modeling and simulation of the dynamics microstructures
- 5. Interaction between matter and radiation at micro and nano scales

B: Multifunctional nanostructures and materials

- 1 Materials for energy (generation, transport, conversion, storage)
- 2 Materials for applications from the high tech industry (materials for high frequency electronics MW, THz, materials for optoelectronics, transparent electronics, materials for non-volatile memories, sensors for automatization and control)
- 3 Materials for applications in biomedicine and environment protection (biocompatible and biofunctional materials, bio and chemical sensors and foto-catalysts)

Laboratory of Magnetism and Superconductivity

Processing:

- -arc and induction furnaces
- -melt spinning,
- -r.f. sputtering, PLD
- Planetary mills
- -spark plasma sintering
- -microwave sintering
- -hot press sintering
- -high temp furnaces
- -rolling/drawing machines
- -high purity glove box

Characterization:

- -SQUID magnetometry,
- -PPMS including transport and magneto-conduction, VSM
- -Nuclear gamma resonance (Mossbauer)
- -DSC, heat capacity and flash calorimetry
- -Gas reaction controller with gas absorption/desorption

Nanostructures responding to *magnetic* excitations. Fundamentals and applications.

1. Magnetic nanostructures for permanent magnets

- Exchange-spring magnets (nano-composites and multilayers).
- Nanostructures with shape anisotropy
- Molecular magnets, spin frustrated systems

2. Magneto-functional nanostructures

- •Magneto-conductive nanostructures (spin valves, exchange bias bilayers, surface and interface spin configurations in thin films and multilayers
- •magneto-elastic, magneto-caloric, shape memory alloys
- Multi-functional nanostructures (heterogenous structures interfacing at least one magneto-functional material)

3. Nanoparticles dispersed in various media

- Magnetic nanoentities dispersed in metallic/semiconducting/polimeric matrices. Functionalized nanoparticles., biomagnetic.
- Magnetic nanofluids

Superconducting structures. Fundamentals and applications.

1. MgB2 based nanocomposites

- Spark Plasma Sintering and Microwave Sintering
- Additions, substitutions, nanocomposites (pinning engineering)
- Characterization, pining and vortex dynamics models
- Application of X-ray tomography for 3D visualization of MgB2 (collaboration with INFLPR)
- Bulk magnets, storage, concentrators and other devices
- Wires and tapes
- Irradiation and ion inplantation
- Biomedical properties and applications of MgB2

2. HTS based structures

- Nano-dots and nano-objects for pinning in HTS and other purposes (pinning engineering)
- Composite heterostructures: growth principles, pinning fundamentals, vortex dynamics
- Whiskers growth, characterization and application

3. Novel and exotic superconductor; search for new superconductors, 2DEG superconducting interfaces

- •Li2(Pd,Pt)3B: synthesis and physics
- Fe-Se-Te and other Fe-based superconductors: vortex dynamics
- oxide superconducting interfaces

4. Nb-based superconductors: vortex dynamics

Synthesis and processing of materials can be defined as:

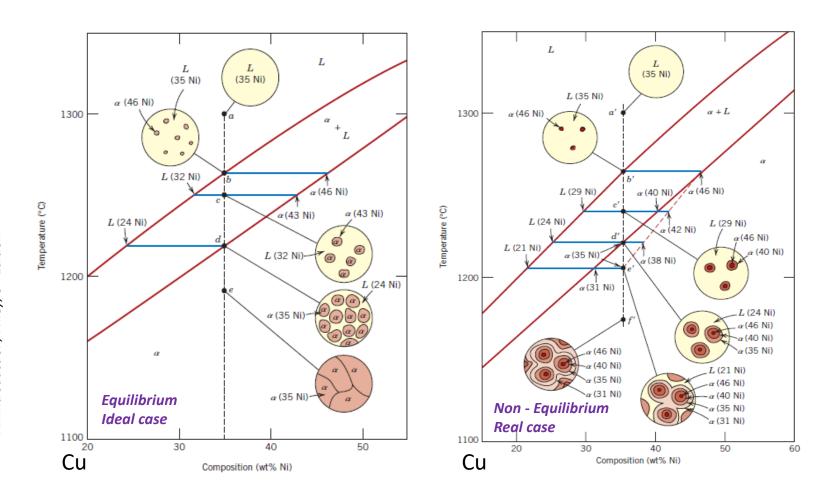
Materials + (fields or particles) =

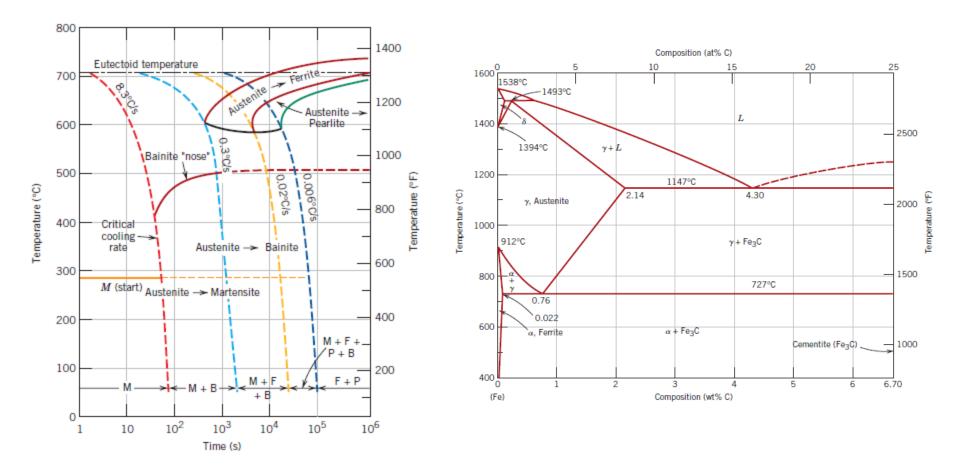
new materials and/or new properties and/or new functionality

'Fields' or particles: electrical, magnetic, thermal, optical,

The key question

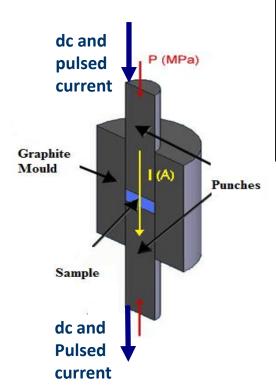
How to introduce (pump) in a controlled manner energy into a material for its modification?


- Energy order of magnitude depending on purpose?
- Volume and time scale (equilibrium, non equilibrium)?
- Energy pumping pattern (e.g. pulsed: on/off) ?
- Material / structure to be modified and its relationship to the field/particle?



Unconventional and far from equilibrium novel technologies

X-ray based technologies

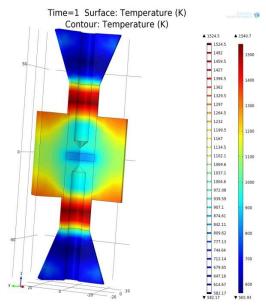

Solid solution

WD Calister Jr and DG Rethwisch, Materials Science and Eng, An Introduction, Wiley, $8^{\rm th}$ Edition

Spark Plasma Sintering (SPS)

Thermal and non-thermal (debatable) particular features

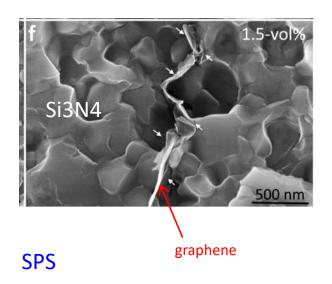
- rapid heating, cooling (resistive heating)
- activated diffusion (electrodifussion?) leading to

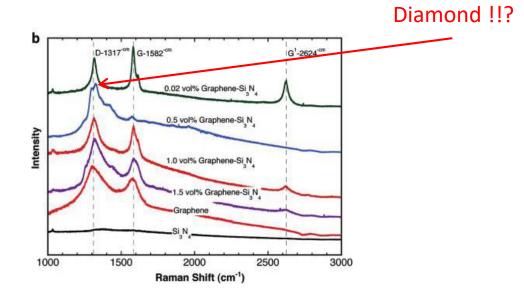

'boundary cleaning'

- Discharges and occurence of plasma states (?): modified boundaries
- -hot spots, heating from inside to outside as for MW heating (?)
- -moderate or high pressures can be applied

Consequences:

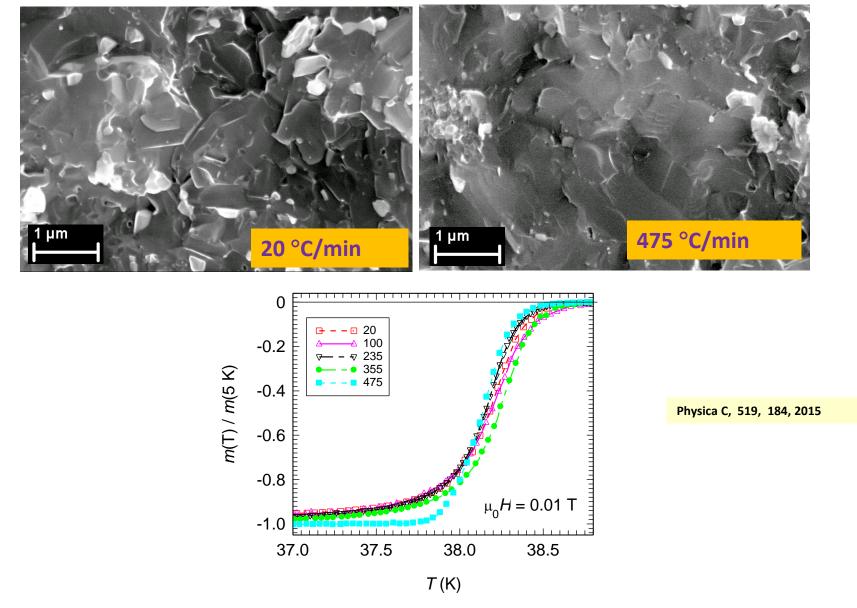
- -preserves nano-size,
- -high density bulks (especially important for difficult to sinter materials)
- -short processing times,
- -technique far from equilibrium possibly introducing defects
- Metastable, new or difficult-to-synthesize phases are obtained


Temp distribution at 867 deg. C (Cu)



Literature

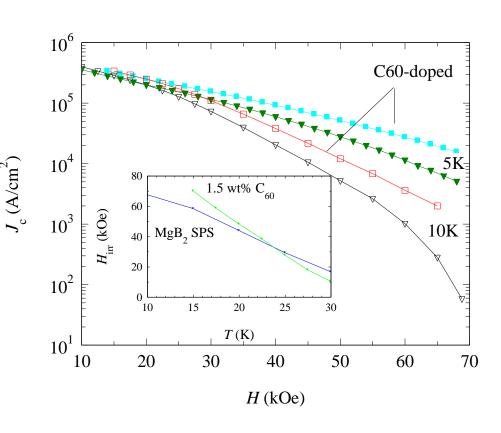
-SPS can result in formation of phases not available in normal conditions!


ACS Nano 5 3182 2011

Samples (we use MgB2 commercial powder) Heating rate

Sample	Heating rate (°C/min)	Apparent density $ρa^{SPS}/R^{SPS}$ [g/cm³]/[%]	Lattice parameter for MgB ₂		Average crystallite size of			Content wt [%]	
			a [Å]	c [Å]	MgB ₂	MgO [nm]	MgB ₄	MgO	MgB_4
pw	Powder MgB ₂	-	3.0866	3.5226	75 ±7	-	-	-	-
'20'	<u>20</u>	2.64/99.3	3.0811	3.5249	175 ±41	77 ±1	70 ±20	8.1	13.6
'100'	100	2.54/95.1	3.0824	3.5270	143 ±38	100 ±12	77 ±25	8.1	11.6
'235'	235	2.64/99.0	3.0819	3.5264	177 ±57	84 ±10	74 ±17	8.1	13.6
'355'	<u>355</u>	2.65/99.5	3.0819	3.5253	190 ±60	78 ±3	71 ±22	7.1	11.1
'475'	<u>475</u>	2.64/99.0	3.0823	3.5260	121 ±25	70 ±5	68 ±18	6.9	11.0

^{*}Crystallite size is shown for a comparative analysis, considering that Williamson-Hall method is not reliable above 100-150 nm.


There is an optimum heating rate of ~100 °C/min to maximize J_{c0} , H_{irr} , (J_{c0} x H_{irr}), and to partially avoid formation of undesirable flux jumps at low temperatures.


MgB₂ by SPS for different on / off pulsed pattern of the current (work in progress)

MgB₂ added with C60 by SPS

Use of graphene C60 was not successful to produce substitution effects of C for B;

Jc was constant (Lim HJ et al, Phys C, 2008, 468 18)

Diameter of nucleus D \approx 1/H² (Derango, P. et al *Nature* 1991, 349, 770)

Superconducting Bi-2212 whiskers

Orientation: (H>0T)

-Bi-2212 only *a*-axis \perp H.

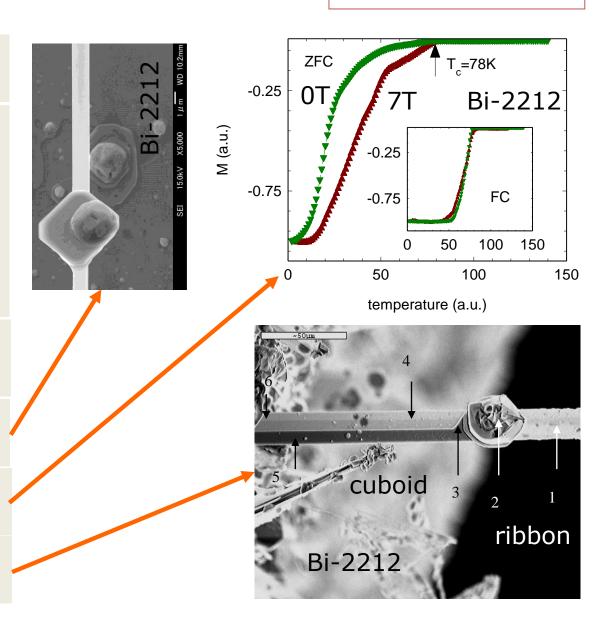
Size: (H>0T)

- -aspect ratio (length/width) is decreasing.
- -maximum length and thickness
- -are decreasing
- (10 40 times lower than average at H=0T)

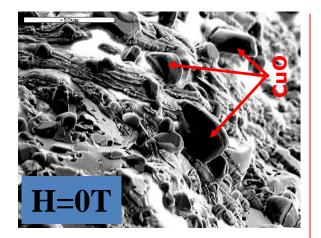
Output: (H>0T)

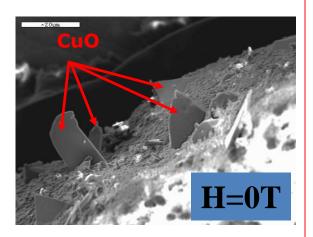
-is lower

Defects: (H>0T)

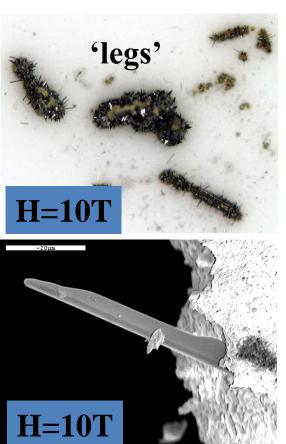

- *less*: less stripes and layers

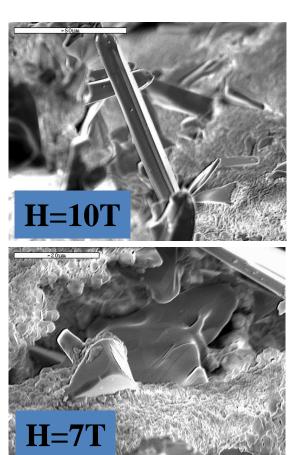
Crystal quality: (H>0T)


- narrower transition


Morphology: (H>0T)

- cuboid is possible



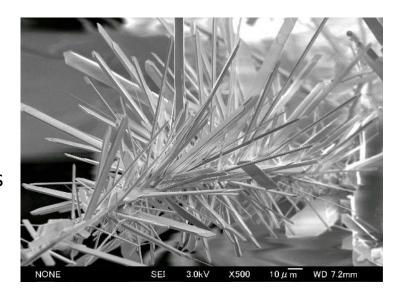

CuO whiskers

2D or 3D growth

1D growth under H

MoO3 whiskers

- gas sensing in breadth analysis
- pseudocapacitive materials with insertion/removal of Li


LaSrMnO3 – films by PLD -magnetic

ZnO (Mn) diluted magnetic films by sputtering

CeO2-Tb/Yb grown by PLD for optical purposes and conversion in solar cells

(Sr, Ba)TiOx for MW and THz

Bi2(Sr, Ca)2Co2Ox thermoelectric whiskers

Thank you for your attention !!!!