MetalJet X-ray sources for high intensity X-ray beams

NIS colloquium, X-ray induced modifications in materials: applications and challenges

Università di Torino, Italy Ulf Lundström, 2017-04-07

exillum

About Excillum

- We make X-ray tubes
- MetalJet technology
- Advanced electron beam technology

Based in Stockholm, Sweden

- Founded in 2007
- Team of 19 people (and growing)

X-ray source development

~1875 Crooks discharge tubes 1895 Discovery of X-rays 1913 Coolidge hot cathode tube

1929 First commercial rotating anode Synchildtron NetalJet source source technology

MetalJet Introduction

The brightness advantage

MetalJet source details

Available alloys and their X-ray spectra

- Non-toxic alloys molten at or close to room temperature
- Gallium-rich alloy has emission similar to copper

Small high quality e-beam spot

- Thanks to advanced electromagnetic focusing and correctional optics together with a high brightness LaB₆ cathode, a high quality near Gaussian source distribution is achieved.
- Both the spot size and the aspect ratio can be tuned freely and are characterized internally.

Operates stable and unattended 24/7

- The positional stability of the spot is measured over 24 hours with a pin-hole camera bolted to the source
 - STD x center of mass = 0.07 μ m
 - STD y center of mass = 0.09 µm

excillum

MetalJet D2+ Technical Specification

Target Material	Ga or In rich alloy		
Acceleration voltage	Up to 70 or 160 kV		
Power	250 W @ 20 µm		
Min focal spot	~ 5 µm		
Min. focus object distance	18 mm		
Beam angle	13° or 30°		

Performance Example (ExAlloy-G1, 70 kV)

Spot Size [µm, FWHM]	E-beam power [W]	Gallium Kα (9.2 keV) peak brightness [photons/(s·mm²·mrad²·line)]
10	125	6.5 × 10 ¹⁰
20	250	3.3 × 10 ¹⁰

Spread over the world

exillum

Applications of the MetalJet

- Small-angle X-ray scattering
 - For material science, biology and semi
 - Normally brightness limited, so MetalJet has large advantage
 - Most sources sold to integrators
- Single crystal diffraction
 - Both for small-molecule and macromolecular crystallography
 - Largest advantage for small crystals
 - Most sources sold to integrators
- X-ray imaging
 - Mainly for phase-contrast X-ray imaging
 - Most sources sold to universities

Single crystal X-ray diffraction

MetalJet D2 installed in a Bruker Single Crystal Diffraction System

	Conventional Sealed Tube	Air-cooled Microfocus Tube	"Traditional" Rotating Anode	Microfocus Rotating Anode	Liquid Metal Jet Anode
Power (W)	1200	30	4000	2500	200
Anode spot size (mm²)	0.4 x 8	< 0.05 x 0.20	\leq 0.3 x 3	< 0.1 x 1.5	≤ 0.02 x 0.08
Power density (kW/mm²)	0.5	> 5	> 5	> 20	> 150
Typical Intensities (ph/s/mm²)	> 2 x 10 ⁸	0.7 - 2 x 10 ¹⁰	0.7 - 2 x 10 ¹⁰	0.2 - 2 x 10 ¹¹	> 4 x 10 ¹¹

Data courtesy of Jürgen Graf, Incoatec

Small-angle X-ray scattering

- SAXS measurements on rat tail tendon, a standard sample with 67 nm periodic structure.
- 57× 89× stronger signal compared to solid anode microfocus tube
- 3.1 × stronger signal compared to state-of-the-art rotating anode

Data courtesy of J. Lange, A. Schwamberger and K. Erlacher of Bruker-AXS.

Propagation-based X-ray phase contrast imaging

Small animal angiography showing <10 µm vessels in mouse tumors

U. Lundström et al., "X-ray phase contrast for CO2 microangiography", *Phys. Med. Biol.* **57**, 2603 (2012).

X-ray optics for microfocus X-ray tubes

exillum

18

Focusing X-rays optics

- Many different techniques
 - Refractive optics (lenses), zone plates, KB mirrors cannot collect enough x-rays
 - Montel mirrors (multilayercoated elliptical mirrors) are widely used for crystallography and small-angle X-ray scattering on x-ray tubes
 - Polycapillary optics are often used for spectroscopy
 - Monocapillary optics might be really good
 - Doubly curved crystals gives a narrow bandwidth

Compound refractive lens

Montel mirrors, background

- Montel mirrors are curved in one direction
- Two mirrors side by side are used to focus in two directions
- Surface is elliptical with source in one focal point and the x-ray focus in the other
- Surface has multilayer coating to increase reflectivity for one wavelength
 - Typically tuned to emission line of the x-ray tube
 - Layer thickness varies along the mirror
- Gives monochromatic beam
- Widely used for crystallography and small-angle x-ray scattering

exillum

Montel mirrors, measurements

- · We offer mirrors with the source
- Parameters of standard crystallography mirror
 - Length L = 150 mm
 - Source-to-focus distance 500 mm
 - Source-to-mirror distance d₁ = 30 mm
 - Collection angle Φ = 39 mrad = 2.2°
 - Convergence angle = 7.5 mrad = 0.43°
- Measurements with calibrated diode and various pinholes in focus
 - Focus size 70 µm FWHM

eccillum

- Focused flux 5.6×10^9 ph/s at 9.2 keV (Ga Ka)
- Peak flux density 6.4×10¹¹ ph/s/mm²
- Smaller focus size with almost the same total flux should be doable with an increased convergence angle

$\sum_{n=1}^{\infty} \frac{10^{11}}{100} + \frac{10^{11}}{100}$

Polycapillary optics, background

- A polycapillary contains many hollow glass tubes guiding the x-rays to a common focus
- Total external reflection on inside of the capillaries
- Can focus a wide x-ray spectrum
- Relatively large collection angle
- Often used for scanning fluorescence imaging and spectroscopy

Polycapillary optics, measurements

- We have recently done measurements on a polycapillary optic together with a MetalJet D2+ x-ray source
- Polycap parameters:
 - Input focal distance $f_1 = 27.5$ mm
 - Length L = 20.9 mm
 - Output focal distance $f_2 = 3.4$ mm
 - Collection angle $\Phi = 8\overline{4}$ mrad = 4.8°
- Focus size measured with an edge scan
 - Between 12 and 14 μm depending on photon energy
- Flux measured with a medipix photon-counting camera
 - 3.3×10⁹ ph/s with energy > 5 keV
- Flux density of 2.0×10¹³ ph/s/mm²
- Collection efficiency drops quickly with photon energy
 - 24% at 5-8 keV and 0.7% at 14-17 keV

Monocapillary optics, background

- A hollow glass tube is drawn to get an elliptical or parabolic inner surface
- Total external reflection on the inner surface is used to focus the x-rays
- Inner surface can be coated with high density material to increase reflectivity
- X-rays can be reflected once or twice depending on design

Monocapillary optics, calculation

- Collection angles up to 4 times the critical angle of platinum
 - For Ga Ka at 9.25 keV this is 35 mrad or 2.0 degrees
 - Beam stop has an angle of 40% of this, blocking 20% of the x-rays
- Point spread function can be small enough to preserve brightness of a 20 um x-ray spot
- Transmission efficiency ~80%

excillum

- MetalJet X-ray source with 20 um spot has peak brightness of 3.3×10¹⁰ ph/(s mm² mrad²) in the Ga Ka line
- With 1:1 imaging we would then expect a flux density of 2.6×10¹³ ph/s/mm² and total flux of 1.0×10¹⁰ ph/s
- Somewhat higher flux density probably possible with demagnification, a smaller source size and including the brehmstrahlung

Thank you for listening!

Ulf Lundström ulf.lundstrom@excillum.com

