

# Synchrotron based nano-focused X-ray investigations

and examples of X-Ray beam modification of samples at ID13

Andreas Johannes, Tilman Gruenewald, Martin Rosenthal, Manfred Burghammer

### **SCANNING NANO-BEAM DIFFRACTION**



 750 Hz frame rate dynamic range ~10<sup>6</sup> • ~2167 x 2070 pixels single photon counting 75 µm pixel size

in single crystals probe the Bragg reflex

optionally combined with vertical rotation

Sample: VO<sub>2</sub> microwire on heatable SiN foil chip

### **VANADIUM DIOXIDE PHASE TRANSITION**



1. Baum P, Yang D-S, Zewail AH. Science. (2007) 2. Joyeeta Nag and R F Haglund Jr J. Phys.: Condens. Matter (2008)

### NANO-FOCUSED DIFFRACTION IMAGING



### NANO-FOCUSED DIFFRACTION IMAGING



## **XRF MAPPING**











### X-RAY BEAM INDUCED CURRENT - XANES



With a bias or intrinsic field X-ray Beam induces a current (XBIC)



### **ID 13 MICRO/NANO-BEAMLINE AT THE ESRF**



### **TYPICAL BEAM SIZES**

# Microbeam (EH-II)

2 x 1.5 microns 2 x 10<sup>12</sup> ph/sec 13 keV



# Nanobeams (EH-III)

170 nm
(Si-NFL + prefocus)
1.5 x 10<sup>10</sup> ph/sec
15 keV

80 nm (Si-NFL)
 8 x 10<sup>8</sup> ph/sec
 15 keV

40 nm (MLL-lenses)
 ~10<sup>10</sup> ph/sec
 12.7 keV



# $10^{12}$ photons / (s $\mu$ m<sup>2</sup>)

```
@ 10 keV

power density:

(10^5 \cdot 10^{12}) \text{ eV/ (s } \mu\text{m}^2)

= 10^{17} \text{ eV/ (s } \mu\text{m}^2)

= 16 \text{ mW } / \mu\text{m}^2

assuming 10 \mu\text{m} = \text{full absorption}

= 1.6 \text{ mW } / \mu\text{m}^3
```

at typical atomic density:  $5 \cdot 10^{22} / \text{cm}^3 = 5 \cdot 10^{16} / \mu \text{m}^3$ 

that is 0.5 eV/s per atom!



















hydrated granule scanned at 100 K

 $\approx 1*1 \mu m^2$  beam,  $4*4 \mu m^2$  mesh

SEM at room temperature



#### **HOW HOT IS THE BEAM?**

# $10^{12}$ photons / (s $\mu$ m<sup>2</sup>)

@ 10 keV power density:  $(10^5 \cdot 10^{12}) \text{ eV/ (s } \mu\text{m}^2)$ =  $10^{17} \text{ eV/ (s } \mu\text{m}^2)$ =  $16 \text{ mW / } \mu\text{m}^2$ 

assuming 10  $\mu$ m = full absorption = 1.6 mW /  $\mu$ m<sup>3</sup>

at typical atomic density:  $5 \cdot 10^{22} / \text{cm}^3 = 5 \cdot 10^{16} / \mu \text{m}^3$ 

that is <u>0.5 eV/s per atom!</u>



### known in photo and e-beam resists



however:

indications that also doserate plays a role!



### **KEVLAR - RADIATION DAMAGE IS DOSERATE DEPENDENT**

# Repeated line scans across fiber

beam: ~2 µm

flux:  $7 \times 10^{11}$  ph/sec

Exptime/scanpoint: 2 sec

# Transition to amorphous state induced by damage caused by the beam



cumulative X-ray dose ~10<sup>14</sup> ph/μm<sup>2</sup>



scan line



intact



damaged



# $10^{12}$ photons / (s $\mu$ m<sup>2</sup>)

@ 10 keV power density:  $(10^5 \cdot 10^{12}) \text{ eV/ (s } \mu\text{m}^2)$ =  $10^{17} \text{ eV/ (s } \mu\text{m}^2)$ =  $16 \text{ mW / } \mu\text{m}^2$ 

assuming 10  $\mu$ m = full absorption = 1.6 mW /  $\mu$ m<sup>3</sup>

at typical atomic density:  $5 \cdot 10^{22} / \text{cm}^3 = 5 \cdot 10^{16} / \mu \text{m}^3$ 

that is <u>0.5 eV/s per atom!</u>



time structure of synchrotron radiation:

- 1000 bunches of 20 ps in 2.8 μs



factor > 1000 in peak intensity





# Damage propagation in spruce wood cell walls



# **Cellulose WAXS patterns**

detector: Frelon 4M

energy: 12.5 keV

exposure: 2 sec

grid: 31 x 16

Collaboration:





# Damage propagation in spruce wood cell walls



# **Cellulose WAXS patterns**

detector: Frelon 4M

12.5 keV energy:

exposure: 2 sec

grid: 31 x 16

Collaboration:





# Damage propagation in spruce wood cell walls



# **Cellulose WAXS patterns**

detector: Frelon 4M

energy: 12.5 keV

exposure: 2 sec

grid: 31 x 16

**Collaboration:** 





# Damage propagation in spruce wood cell walls



# **Cellulose WAXS patterns**

detector: Frelon 4M energy: 12.5 keV

exposure: 2 sec

grid: 31 x 16

**Collaboration:** 



# **OUTLOOK TO EBS AND TYPICAL POTENTIAL OPTIMIZATION (EX. ID13)**

# **ESRF EBS** and similar X-ray sources, upgrades:

- Source x30 Gain in brilliance, undulator x10
- optimization of prefocussing x5
- pink beam x30 (full undulator harmonic + CRL monochromator)
- >> conservative estimate of overall potential gain in flux:

**45000** 



conservative estimate of overall potential gain in flux:

# 45000

 management and investigation of radiation damage future micro-/nano-beamlines will have many traits of today's nano-second time resolved end-stations

beam choppers, complex positioning devices timing electronics, detectors adapted to count rates

- - -

conservative estimate of overall potential gain in flux:

# 45000

2) Experimental design has to improve: today poor compared to highly automated MX beamlines one key issue:

# time lag of data acquisiton sequence:

i.e. reaction time of the system for automatic decision making and optimized experimental design

# Fast does not necessarily mean quick!

example: on-board computation capacity of detectors would help

. . .



### **OUTLOOK**

conservative estimate of overall potential gain in flux:

# 45000

3) - N)
sample preparation, data management, anticipating software needs

. . .



### **COLABORATIONS AND CONTRIBUTORS**

VO<sub>2</sub>:

Carsten Ronning, Jura Rensberg

XBIC - XANES:

+ Gema Martinez-Criado, Damien Salomon, Alois Lugstein, Markus Glaser

Starch:

from Manfred Burghammer and Cristian Riekel

Calorimeter, Indium:

from Martin Rosenthal + Dimitri Ivanov

Spruce secondary radiation damage: from collaboration K. Müller and Manfred Burghammer