

Torino Workshop, April 7th, 2017

X-ray nanopatterning potential

Truccato Marco

University of Torino, Italy

marco.truccato@unito.it

Basic feature of X-ray Nano Patterning (XNP)

SEM observation:

X-ray Nano-Diffraction:

Mild and controlled perturbation of the lattice

BUT

large perturbation of the electrical properties

Main assets of XNP

1. NO USE of external chemical elements

Absence of chemical contamination

XNP:

Main assets of XNP

2. NO use of MATERIAL/VACUUM interfaces BUT use of MATERIAL/MATERIAL interfaces,

- a) Higher mechanical stability
- b) Higher thermal conductance and heat dissipation
- c) Higher EM coupling between diffrent portions of the material

FIB:

XNP:

Main assets of XNP

3. High penetration of X-rays

Very high aspect ratio (about 100:1) between penetration depth and resolution

XNP

Possibility of Multilayer patterning

Naive comparison

Minimum beam size

Minimum feature size depends on aspect ratio

STATE OF THE STATE

Possible application

➤ THz emitter: 6 Bi-2212 mesa

(view from top)

T.M. Benseman et al., Appl. Phys. Lett. 103, 022602583 (2014)

Mesa synchronization implies emitted power $\propto N^2$

➤ EM coupling supposed to take place via the crystal base.

