

Torino, 8 Novembre 2016

Proprietà dei materiali superconduttori e della loro interazione coi raggi X

Marco Truccato

1°piano Istituto Vecchio - stanza A 37- tel 011 6707374 marco.truccato@unito.it

Aspetti teorico-pratici collegati a questa tematica sono trattati nel corso di:

FISICA DEI SUPERCONDUTTORI - [MFN0858, Fisica] Mutuato da:

SOLID STATE PHYSICS - [CHI0027, Scienza dei Materiali]

- 5 CFU frontali + 1 CFU lab
- In Inglese (Master Europeo MaMaSELF)
- III periodo didattico (aprile-giugno)

What about friction in the micro- world ?

Here the lack of friction is the rule !!!

Indeed different physical laws hold (*Quantum Mechanics*): The key quantity is the Planck constant $h = 6.6 \times 10^{-34}$ J s

Quantum Mechanics describes the electron motion around the nucleus

During their motion around the nucleus, electrons never loose energy, which means that they move WITHOUT FRICTION

✤ YES, in SUPERCONDUCTING materials, that are the ones which show <u>LACK OF ELECTRICAL RESISTANCE</u>

♦1911: Superconductivity discovered in mercury by Kamerlingh Onnes (Nobel prize in 1913). T_c = 4.2 K ≈ - 269°C. Too cold? It depends: average T of the Universe = 2.73 K

Are the temperatures always so low ?

1986: Bednorz & Müller (Nobel prize in 1987)

Is it really with NO FRICTION ?

In superconducting loops, current lasts for years with no power supply

Another surprise: the Meissner effect

Superconductors ALWAYS expel the magnetic field: the presence of BOTH phenomena defines superconductivity.

B=0

How is it possible?

Unexpected event: Due to some interaction (e.g. electron-lattice), electrons in a solid can experience a net attraction force exceeding their coulomb repulsion.

✤ A bound state origins for two electrons at some

In a superconductor, billions of Cooper pairs exist in the same volume overlapping and crossing each other. They are in the same *quantum state*, forming a macroscopically extended superfluid.

Cooper pair tunnelling

✤Josephson effect:

Special behaviour: DC *current* induces NO voltage drop; DC *voltage* induces an AC current (AC effect)

*This behaviour is affected by the magnetic field: this can be exploited to measure it.

The SQUID nominally can measure $1fT = 10^{-15}$ T, i.e. 10^{11} times smaller that the Earth magnetic field.

Examples of superconducting devices

All based on the Josephson effect (both sensors

and digital circuits)

<u>Sensors</u>: Superconducting QUantum Interferfence Device (SQUID): very sensitive magnetometers (typically 2 pT).

Used in **Biomedicine** for Magnetoencephalography (MEG) and magnetocardiography (MCG), even for monitoring fetal cardiac activity .

Typically about 100 sensors, which means 300 channels

 $\overleftarrow{}$

SQUID dc-SQUID

Very useful for brain tumor, Alzheimer's disease , epilepsy diagnosis. Faster than MRI (10 msec per frame)

Topic n.1: Intrinsic Josephson junctions... High T_c Superconductor: BSCCO**Oxides...**

→ $Bi_2Sr_2CaCu_2O_{8+\delta}$ (Bi-2212): an inherently anisotropic material

Intrinsic Josephson junctions

The crystal structure of Bi-2212 can be considered as a stack of Josephson junctions (JJ's)

Direct AC Josephson effect (DC voltage bias \rightarrow AC current)

Emission power limited to the pW range for a single junction \rightarrow <u>Arrays of JJ's</u>

THz radiation emission

> Resonant frequency proportional to the inverse of the width of the mesas (max= 0.85 THz for 40- μ m wide mesa)

≻Power increases with the square of the junction number

Maximum power about 610 μ W (T. M. Benseman *et al.* Appl. Phys. Lett. 103, 022602 (2013))

Emission mechanism still unclear

>Interesting for production of THz sources

Fabrication process \succ

The traditional way: **FIB** etching

- i) Photolithography or shadow masks
- ii) Etching the trenches by FIB

- 1. Adsorption of the gas molecules on the substrate
- 2. Interaction of the gas molecules with the substrate Formation of volatile and non volatile species
- 3. Evaporation of volatile species and sputtering of non volatile species

Typical parameters for Ga ion beam:

E = 30 KeV I = 10 pA

A novel emerging way: ... and X-ray nanolithography

Si drift detector

>X-ray nanobeam at a synchrotron:

X-rays

In collaboration with

➢ Kirkpatrick-Baez system (two elliptical mirrors independently bent, one coated with graded multilayer)
 ➢ Flux ≈ 1.9 × 10¹¹ ph/s
 ➢ Energy ≈ 17 keV

Synchrotron radiation in air at room temperature

Chip for combined «single-crystal» XRD and electrical measurements

Series of: i) irradiation (XRF maps)
 ii) XRD
 iii) Electrical measurements

A. Pagliero et al., Nano Lett. 14, 1583 (2014)

Equatorial series = (0 0 l) peaks

c-axis measurements

Novel possible photolithographic process for oxides

Dose effective in changing the current direction without destroying the lattice !!!

M. Truccato et al., Nano Lett. 16, 1669 (2016)

Ongoing developments

➢ In principle, this idea could work with many oxides

Preliminary indication: Local modification of TiO₂ properties.

Seo Hyoung Chang *et al.*, ACS Nano **8**, 1584–1589, (2014)

We are going to test X-ray nano-lithography on TiO_2 !

How does it work?

Actually, nobody knows. But:

Thermal origin should be considered in real pulsed conditions (FEM analysis of thermal load).

Photoelectrons

> Photoelectron fluence of the beam <u>computed</u> with MCNP v6.0

From photoelectrons to i-O knock-out

$N_{ad} = N_{o_i} \int_{E}^{E_0} \sigma_d (E) \Phi_e(E) dE$ Atoms displaced:

Mc Kinley-Feshbach cross section:

1 m

$$\sigma_d = \frac{\pi r_0^2 Z^2}{\beta^4 \gamma^2} \cdot \left\{ \frac{T_m}{T_d} - 1 - \beta^2 \ln \frac{T_m}{T_d} + \frac{\pi Z}{137} \beta \left[2 \sqrt{\frac{T_m}{T_d}} - \ln \frac{T_m}{T_d} - 2 \right] \right\}$$
$$T_m = 2E \left(E + 2mc^2 \right) / Mc^2$$

<u>Very sensitive to T_d</u>

Fraction: *fad*

 T_d quite uncertain:

O activation energy in the ab plane = 0.93 eV

Runde et al. Phys. Rev. B 45, 7375 (1992)

binding energy of i-O atoms = = 0.073 eV

Bandyopadhyay et al. Phys. Rev. B,58, 15135 (1998)

N_{ad}

Detailed experiment simulation $T_d = 0.073 \text{ eV}$ - Crystal cross-section

Topic n.2: Magnetic shielding

Big toroidal fields obtained by means of cryogen free superconducting magnets .

Stray field is also a concern: to be kept below 5 G = 0.5 mT

* Magnetic shielding is of interest also in MRI systems and for electronic equipment

Medium T_c SC: MgB₂

a=3.09 Å c= 3.52 Å

Almost insensitive to grain boundaries

Theoretical density = $2.63 \times 10^3 \text{ kg/m}^3$

working temperatures about 20-30 K (attainable with LNe or cryocoolers)

Excellent workability (lower cost compared to HTSC)

suitable for airborne applications

Sample preparation

- 1) Spark plasma sintering (SPS): MgB₂ powders (average grain size=2.3µm) 160°C/min ramp up to 1150°C for 3 minutes Vacuum (30-40 Pa) 1600 A for 3ms, in a 12:2 pulse sequence 18 minutes per sample only pellets feasible
- 2) Reactive liquid infiltration (RLI):

Boron with graphite core and steel jacket
Mg/B 1.2/2 ratio in stainless steel box
650°C for 3 h plus 900°C for 20 h in Ar
Treatment at 2.45 GHz,1600 W for 30 min in Ar (optional)
Hollow cylinders feasible

Sample characterization

 T_c =37.10 K Transition width ≈ 0.5 K

Gozzelino at al., J Supercond Nov Magn (2011)

Magnetic field distribution

Experimental setup

Table 1 MgB₂ lattice parameters of the synthesized samples

10 mm

	Parameter value	sigma	95% conf.
a-axis (Å)	3.08611	0.00013	0.00037
c-axis (Å)	3.52466	0.00026	0.00073
Cell vol. (Å ³)	29.0717	0.0026	0.0071

In co-operation with:

Magnetic field distribution and modelling

- Numerical solution of the Helmholtz equation for the vector potential and the magnetic field
- Comparison between numerical predictions and experimental results

Shielding factor

3 shield configurations:

LOW FIELDS: higher penetration due to higher local field induced by FM cup HIGH FIELDS: SF higher by a factor of 3-5, depending on T

In hybrid systems, the total SF can be higher than the product of the two separate SF's

Topic n.3 : MW/THz devices by means of heavy ion lithography

EXPERIMENTAL SUPERCONDUCTIVITY GROUP

GRUPPO di SUPERCONDUTTIVITA' SPERIMENTALE

POLITECNICO di TORINO

Department of Applied Science and Technology and **INFN**, Sezione di Torino

Research theme	Tema della ricerca
Experimental techniques for	Tecniche sperimentali per la
characterization and engineering of	caratterizzazione e l'ingegnerizzazione di
superconducting, magnetic and functional	materiali superconduttori, magnetici e ossidi
oxide materials, towards employment in	funzionali, per impiego in dispositivi
innovative device applications	innovativi

Research activity of the group	Attività di ricerca del gruppo
The research group is active in the field of experimental	Il gruppo di ricerca è attivo da circa due decenni nel campo
superconductivity from about two decades. It was aimed	della superconduttività sperimentale , inizialmente nello
at investigating the particle-irradiation effects on vortex	studio degli effetti dell' irradiazione con particelle sulla
dynamics in high-Tc superconductors, in collaboration	dinamica dei vortici in superconduttori ad alta Tc, in
with INFN.	collaborazione con INFN.
Since then, the group significantly extended its research	Da allora, il gruppo ha esteso la sua attività di ricerca a
activity to new topics, including the study of the	nuove tematiche, quali lo studio delle proprietà
electromagnetic properties of new superconductors	elettromagnetiche di nuovi superconduttori (attualmente
(currently iron-based superconductors) and	quelli a base di ferro) ed eterostrutture
superconductor/ferromagnetic heterostructures , the	superconduttore/ferromagnete , il design di dispositivi
design of innovative superconductor-based devices and	innovativi basati su materiali superconduttori (sensori
applications (e.g. THz sensors, microwave devices,	THz, dispositivi a microonde, schermi magnetici) e l'uso di
magnetic shielding solutions) and the use of high-energy	facility di irradiazione con ioni pesanti energetici per lo
heavy-ion facilities for both fundamental studies and	studio di meccanismi fondamentali e l'ingegnerizzazione di
engineering of functional materials.	materiali funzionali.
We have availability of several laboratories, all equipped	Il gruppo dispone di diversi laboratori, tutti equipaggiati con
with cryogenic systems. The whole set of experimental	sistemi criogenici. L'insieme delle tecniche (magneto-ottica e
techniques (magneto-optics, structural, electric, magnetic,	setup per caratterizzazioni strutturali, elettriche, magnetiche,
microwave and optical facilities) allows us to efficiently	a microonde e ottiche) consente di studiare efficacemente
characterize not only superconductors, but also magnetic	non solo materiali e dispositivi superconduttori, ma anche
materials and functional oxides.	materiali magnetici e ossidi funzionali.

MAIN SUBJECTS for MS/PhD THESIS ARGOMENTI PROPOSTI PER TESI MS/PhD

- use of high-energy heavy-ion lithography for material nano-engineering
- magneto-optical imaging techniques
- design and characterization of superconducting microwave devices
- microwave techniques for fundamental studies on unconventional superconductors
- plasmonic mechanisms and resonance of domain walls in magnetic heterostructures
- setup and test of a cryogenic scanning Hall probe facility
- study of innovative magnetic shielding solutions

CONTACT	Prof. Gianluca Ghigo	tel. 011-0907362 / 011-0907349 gianluca.ghigo@polito.it
		www.polito.it/superconductivity

Topic n. 4: superconducting devices for basic physics research

In co-operation with :

Typically 6 month stay in Stockholm at the nanofabrication lab.

Clean room

Ar milling .

SEM/FIB-

E-gun evaporator

Example: THz emission

For further information:

Marco Truccato

Physics Dept. – 1 floor old building room A37 – ph. 0116707374 marco.truccato@unito.it

Hall coefficient is 100 times greater than expected. Mesoscopic phenomenon ?

Transverse resistance R₂, section 2a-2b

Forcing the current by means of FBetched trenches (depth ≈ 200 nm)