Gruppo di Fisica dello Stato Solido Dipartimento di Fisica, Università di Torino

Presentazione degli Argomenti di Tesi per le Lauree Magistrali in Fisica, Fisica dei Sistemi Complessi, Scienza dei Materiali

Torino, 11 novembre 2019 Diamante artificiale: Applicazioni nell'ottica quantistica

Jacopo Forneris

Il carbonio

Tre tipi di orbitali ibridi

II carbonio

Numerose forme allotropiche: differenti strutture a partire dalla stessa specie chimica

Diamante

$\alpha\delta\dot{\alpha}\mu\alpha\varsigma$ (indistruttibile)

legami covalenti con

disposizione tetraedrica

unità fondamentale di cristallo

Struttura cristallina

Tetraedro: struttura rigida, forti legami chimici

Unità di cella: massimo numero di atomi possibili

Dei materiali noti, il diamante ha il maggior numero di atomi per unità di volume

Proprietà chimico-fisiche

durezza inerzia chimica resistenza elettrica trasparenza conducibilità termica

struttura periodica

4 /31

Il diamante naturale

Il diamante è una forma **meta-stabile** del carbonio in condizioni ambientali standard

Viene formato in natura ad **alte pressioni e temperature**

• Sorgenti primarie: vulcani

• Sorgenti secondarie: siti dove i diamanti sono erosi fuori dalle rocce che li contengono (kinberlite, lampronite)

Nella **litosfera** (a 140-190 km di profondità) (pressione: 4.5–6 Gpa temperature: 900–1300 °C)

Trasporto in superficie: tramite eruzioni vulcaniche, il magma trasporta rocce con inclusioni (xenoliti)

Kimberly Mine, il più grande buco nella terra

Il diamante sintetico

Ľuomo imita la natura ...

 con un sistema di sintesi ad alte pressioni e temperature
 Nel 1954 General Electric consegue il primo processo di sintesi del diamante sistematico e commercialmente sostenibile

Pressa per la sintesi @ Kobelco, anni '80 Temperatura: 3000 °C, Pressione. 3.5 GPa

Il diamante sintetico

Ľuomo imita la natura ...

...e la supera!

- con un sistema di sintesi ad alte pressioni e temperature
 Nel 1954 General Electric consegue il primo processo di sintesi del diamante sistematico e commercialmente sostenibile
- con un sistema di deposizione da fase vapore: atomi di carbonio condensano da un plasma "caldo" ad un substrato "freddo"

f come.

V noc

Singoli difetti otticamente attivi in diamante sintetizzato con tecnica CVD

Un materiale estremo

Un materiale estremo

Basso coefficiente di attrito

Elevata durezza meccanica

Resistenza alla radiazione

Alta mobilità dei portatori di carica

Elevato campo di breakdown

Inerzia chimica

Bio-compatibilità

Funzionalizzabilità chimica della superficie

Trasparenza ottica dal vicino UV al Iontano IR

Difetti otticamente attivi nella band-gap

Applicazioni del diamante artificiale

Basso coefficiente di attrito

Elevata durezza meccanica

Resistenza alla radiazione

Alta mobilità dei portatori di carica

Alto campo di breakdown

Inerzia chimica

Bio-compatibilità

Funzionalizzabilità chimica della superficie

Trasparenza ottica dal vicino UV al lontano IR

Difetti otticamente attivi nella band-gap

strumenti da taglio

polveri abrasive

presse meccaniche

dissipatori termici

diodi di potenza

finestre ottiche

bio-sensori cellulari

rivelatori di radiazione

Applicazioni del diamante artificiale

tecnologia di sintesi matura

applicazioni industriali

applicazioni tecnologiche avanzate

ADVANCED DIAMOND TECHNOLOGIES, INC.

Centri di colore in diamante

Trasparenza ottica dal vicino UV al Iontano IR

Difetti otticamente attivi nella band-gap

Il diamante deve il suo fascino alle sue proprietà fisiche:

- **trasparenza**: elevata band gap (E_g=5.5 eV)
- brillantezza: elevato indice di rifrazione (n=2.4)
- variabilità di colorazione: presenza di impurezze nel reticolo cristallino (B, N, ...)

Difetti reticolari in diamante

Difetti reticolari nel cristallo:

- vacanze: assenza di atomi nel sito

- impurità sostituzionali

una combinazione dei due precedenti es. complesso impurezza-vacanza

in aggiunta: interstiziali, dislocazioni, difetti estesi... -

Centri di colore in diamante

E_g =5.5 eV

5.5

Alcuni complessi impurezza-vacanza sono dei **difetti luminescenti**: Sistemi a due livelli con transizioni otticamente attive

Molti centri sono caratterizzati da:

- elevata efficienza quantica
- emissione nello spettro della luce visibile
- fotostabilità a **temperatura ambiente**
- emissione di singoli fotoni (difetti isolati)

complesso silicio-divacanza

14/31

Sorgenti di singolo fotone

Una sorgente di singolo fotone è un sistema fisico in grado di emettere:

- un fotone per volta
- quando richiesto (in risposta ad un segnale di trigger)
- con determinate proprietà:
 - polarizzazione
 - lunghezza d'onda

Idealmente, i fotoni emessi devono essere identici

Centri di colore individuali: sorgenti di singolo fotone

Tecnologie quantistiche

Dal Quantum Technologies Flagship Final report (2017)

"The developments in the **leading domains of Quantum Technologies** - **Communication**, Computation, Simulation, **Sensing** and Metrology - can be expected to produce transformative applications with real practical impact on ordinary people"

Tecnologie quantistiche

Dal Quantum Manifesto (2016)

"Now, previously untapped aspects of quantum theory are ready to be used as a resource in technologies with far-reaching applications, including **secure communication** networks, **sensitive sensors** for biomedical imaging and fundamentally new paradigms of comuptations"

1. Communication 0 – 5 years

- A Core technology of quantum repeaters
- B Secure point-to-point quantum links

- > 10 years
- E Quantum repeaters with cryptography and eavesdropping detection
- F Secure Europe-wide internet merging quantum and classical communication

Comunicazione quantistica: protocollo BB84

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA) Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

International Conference on Computers, Systems & Signal Processing Bangalore, India December 10-12, 1984

When elementary quantum systems, such as polarized photons, are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachieveable with traditional transmission media, e.g. a communications channel on which it is impossible in principle to eavesdrop without a high probability of disturbing the transmission in such a way as to be detected. Such a quantum channel can be used in conjunction with ordinary insecure classical channels to distribute random key information between two users with the assurance that it remains unknown to anyone else, even when the users share no secret information initially. We also present a protocol for coin-tossing by exchange of quantum messages, which is secure against traditional kinds of cheating, even by an opponent with unlimited computing power, but ironically can be subverted by use of a still subtler guantum phenomemon, the Einstein-Podolsky-Rosen paracox.

QUANTUM TRANSMISSION Alice's random bits	1 R 1 D	1 D 🖍 D 1	0 R ₽ R	1 R R R 1	1 R D 0	0 R D 0	0 R R R 0	0 D 🖍 R 1	1 R D 1	1 р г р 1	о <u>М</u> а о	0 D 2 D 0	1 R T R 1
Bob reports bases of received bits		D OK 1		R OK 1 OK	D	D	R OK O	R	D	D ОК 1		D ОК О ОК	R OK 1
Remaining shared secret bits		٦					0			1			1

Comunicazione quantistica: protocollo BB84

Comunicazione: **sequenza di bit**

Sequenza di fotoni con differenti polarizzazioni, prodotti e misurati attraverso due set di basi indipendenti

Il fotone si trova in una sovrapposizione dei due stati La base scelta per la misura opera una proiezione proietta sullo stato finale

Attività di ricerca @ UniTo

Sorgenti di singolo fotone

informazione codificata nelle **proprietà** (energia, polarizzazione) dei fotoni emessi

Attività di ricerca @ UniTo

Caratterizzazione di centri di colore in diamante

Microscopia confocale

Movimentatore con risoluzione spaziale <10 nm Obiettivo ottico

2 μm

Obiettivo 100x: Eccitazione (laser) e raccolta puntuale

Mappe in fotoluminescenza: intensità del segnale (numero di fotoni raccolti) in funzione della posizione

Caratterizzazione di centri di colore in diamante

Microscopia confocale

Caratterizzazione di centri di colore in diamante

Microscopia confocale

Fabbricazione di sorgenti di singolo fotone

Complessi di tipo impurezza-vacanza:

- introduzione dell'impurezza nel materiale
- trattamento termico a T>750 °C per consentire la formazione di legami chimici stabili

L'introduzione delle impurezze avviene per **impiantazione ionica**: Un fascio di ioni della specie chimica desiderata viene focalizzato sul campione (energie: 30-2000 keV)

Lavoro della comunità scientifica:

- Elevate risoluzioni spaziali (<100 nm)
- impiantazione controllata di singoli ioni in posizioni specifiche

Microfascio dell'acceleratore AN2000 Laboratori Nazionali INFN di Legnaro

Sfide tecnologiche:

Qual'è l'impurezza ottimale come sorgente?

Difetti luminescenti in diamante - 2019

Processamento e fabbricazione di dispositivi

Sistema di litografia con laser ad alta potenza Fabbricazione di campioni ed elettrodi metaliici

Probe Station ad alto vuoto Caratterizzazione elettrica di campioni e dispositivi

Camera pulita: 24 m² condizioni ambientali controllate Classe 10000: meno di 3000 particelle di polvere per m³

Impiantatore ionico Fabbricazione di dispositivi quantistici... e non solo!

Interazione delle sorgenti con l'ambiente esterno

L'interazione dei difetti luminescenti con l'ambiente esterno (campi di interazione) modifica le loro proprietà di emissione (rateo di emissione, lunghezza d'onda, ...)

E' possibile quindi analizzare la **fotoluminescenza** dei difetti per **misurare**:

Campi Magnetici

Modulazione nell'emissione del complesso azoto-vacanza

Temperatura

Campi elettrici

Shift nella lunghezza d'onda di emissione di centri a base Pb

Sensori cellulari quantistici

Gli impulsi neuronali generano deboli campi magneti. Una classe di difetti in diamante ha il potenziale per rivelarli

2920 2960

frequency (MHz)

Processamento chimico e fisico di polveri di nanodiamanti

Dispersione su vetrino Analisi e selezione dei nano-cristalli

Internalizzazione cellule neuronali di una coltura (ippocampo di topo)

Misure preliminari di campo magnetico: la tecnica e le nano-particelle non alterano il comportamento del network

cfr. Dr. Federico Picollo

Grazie per la vostra attenzione

Contatti jacopo.forneris@unito.it

http://www.solid.unito.it