

Solid State Physics

group

Diamante artificiale: applicazioni nella bio-sensoristica

http://www.ph.unito.it/dfs/solid/index.html

Mail: federico.picollo@unito.it

FEDERICO PICOLLO

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Diamond properties

- bio-compatibility
- chemical inertness

bio-sensor

Cellular

lonizing radiation

detector

• optical transparency

- Radiation hardness
- Tissue equivalence
- High carrier mobility
- High breakdown field

- diamond synthesis: a mature technology: availability of synthetic monocrystalline samples of high quality (electronic grade)
- diamond fabrication: Ion Beam Lithography

MeV ion induced damage in diamond

4

A. Silverman et al., Physical Review B 83, 224206 (2011)B. A. Fairchild et al., Advanced Materials 24, 2024 (2012)

Thermal annealing

Below threshold: diamond with Frenkel defects → **diamond**

High fluence implantation \rightarrow formation of an amorphous carbon layer where the damage density exceeds a threshold

Above threshold: amorphous carbon

→ nanocrystalline graphite

MeV collimated ion beam lithography

Direct fabrication of graphitic electrodes into diamond crystal

Parallel fabrication Sensor dimensions: up to 20 mm² Electrodes resolution: 100 – 300 nm

High power laser or Focused Ion Beam micro/nano machined mask for broad MeV ion beam implantation

- Variable thickness mask -

"Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond", F. Picollo, et al., New Journal of Physics 14 (2012) 053011 "All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters", F. Picollo, et al., Scientific Reports 6, (2016) 20682

MeV collimated ion beam lithography

MeV collimated ion beam lithography

SINGLE CRYSTAL DIAMOND BIOSENSORS

Neurodegenerative diseases

Alzheimer's disease

consequence of several cellular degenerative processes, primarily affecting memory encoding brain regions, such as hippocampus

By Henry Vandyke Carter - Henry Gray (1918) Anatomy of the Human Body (See "Book" section below)Bartleby.com: Gray's Anatomy, Plate 739, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3907047

Parkinson disease

progressive degeneration of the *substantia nigra* pars compacta (SNc) dopaminergic neurons

By Madhero88 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7157181

Neurodegenerative diseases such as **Parkinson** and **Alzheimer's disease** (PD, AD) are characterized by a long lasting **asymptomatic phase** during which neurons alter their synaptic and excitable properties without clearly affecting brain function

Biosensing on excitable cells

10

Standard commercial detector

 \rightarrow Multi electrode arrays (MEA) \leftarrow

Detection technique

• Potentiometry

Drawback

Only potentiometric measurement

Standard commercial detector

ightarrow Carbon fiber electrodes (CFE) \leftarrow

Detection technique

• Amperometry

Drawback

10 µm

• One cell measure + only amperometric measurement

Biosensing on excitable cells

16 ch MEA: Amperometry or Potentiometry

12

diamonds:

- Chemical Vapour Deposition
- single crystal
- type lla
- 4.5×4.5×0.5 mm³

implantation:

- He+ @ 1.2 MeV
- fluence 1.2 · 10¹⁷ cm⁻²
- penetration depth $\sim 2 \ \mu m$

thermal treatment:

- 950 °C for 2 hours
 - ~10⁻⁶ mbar

Potentiometric detection of Action Potential

13

Sinoatrial node & potentiometry

The second secon

100 µV

Sinoatrial node slice with heart muscular tissue residue

- natural *pacemaker* of the heart
- govern frequency and strength of atrial contraction

- Noise: 20 μV
- Spikes frequency: 2 Hz;
- Mean signal amplitude: $300 \,\mu V$

Potentiometric detection of action potential

15

Amperometric detection of exocytosis

16

Adrenaline oxidation

- secretion of catecholamines (adrenaline, noradrenaline, etc.)
- catecholamines are secreted from vesicles in which they are highly concentrated → strong signal
- secretion from 1 vesicle: 50-100 ms
- detection of the oxidized species in correspondence of a biased electrode
- electrically or chemically stimulated

Exocytosis detection from substantia nigra neurons

Network of substantia nigra neurons

- Experiment performed after 21 DIV
- Cell network threated with L-Dopa for 1 h
 → increasing of vesicles dimension
- Stimulation with KCl solution

DIAMOND BIOSENSORS for RADIOBIOLOGY

Radiobiology

19

Branch of biophysics concerned with the effects of ionizing radiation on organisms

Ionizing radiation detection

0.0

0

20 40 60

80 100 120 140 160 180 200 220

Horizontal (µm)

0.0

0

50

100

Horizontal (um)

200

150

0.0

DIACELL project

21

Diamond substrate: robust & reproducible, bio-compatible, non-toxic, optically transparent, tissue equivalent, radiation hard

Radiation detectors

Diamond based-detector for radiobiology

Sensor fabrication by means of IBL

23

✓ Vertical irradiation

Thin detector grade diamond

Sensor characterization: dosimetry

Interfacing of diamond sensors with TOFFEE (in collaboration with AMPLIFIER ToT DISCRIMINATOR front-end side + Back-end side External threshold STRETCHER External adjustment LVDS 0 IN HETDO Stretcher LVDS driver ChX input ChX Vin Amplification stage \checkmark Variable threshold discriminator \checkmark LVDS output \checkmark 0.5 -

- Electronic chain already interfaced with graphitic electrodes in diamond
- Detection test performed both with X-Ray and alpha particles

Synchrotron X-Ray nano-beam cells irradiation

25

ID 16 nanobeam line

- 200 nm spot size
- $E = 17.4 \text{ keV}; \Phi = (0.1 1) \cdot 10^{10} \text{ photons s}^{-1}$

Adrenal phaeochromocytoma (PC12) cells

- cancer cell line from adrenal medulla of a rat
- model for neurosecretion studied

X-Ray induced exocytosis

control

I _{max} (pA)	Q (fC)	t _{1/2} (ms)
8.75 ± 0.18	175 ± 4	3.67 ± 0.17

- ✓ Simultaneous detection of biosignals and ionizing radiation
- ✓ First observation of single cell exocytosis stimulation with X-Ray

NANO-DIAMOND for BIOSCIENCE

Nanodiamond properties #2

28

Luminescent lattice defects:

- Vacancies
- Substitutional
- Interstitials

Nitrogen-Vacancy complex

Multifunctional nano-particles

Drug Delivery:

veicolazione farmaci in target cellulari specifici

Luminescenza:

possibilità di tracciare le nanoparticelle nel processo biologico

Multifunctional nano-particles

Drug Delivery:

veicolazione farmaci in target cellulari specifici

Luminescenza:

possibilità di tracciare le nanoparticelle nel processo biologico

Nanodiamonds surface modification

Sample preparation:

 thermal annealing 800 °C × 8 h in vacuum

Multifunctional nano-particles

Drug Delivery:

veicolazione farmaci in target cellulari specifici

Luminescenza:

possibilità di tracciare le nanoparticelle nel processo biologico

MeV ion induced damage in nanodiamond

~ tens of NV center also in smaller crystal

Photoluminescence spectra

34

Drug Delivery (CETUXIMAB)

Laser excitation

Confocal microoscopy

CONTROL Only Nanodiamon

Multifunctional nanodiamond for drugdelivery

Federico Picollo

federico.picollo@unito.it

011 670 7879

Dip. Fisica, ufficio primo piano edificio vecchio (A26)